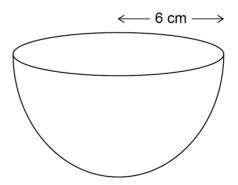

1 Here are two solids.


Cylinder

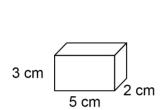
radius 4 cm height 10 cm

Hemisphere

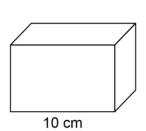
radius 6 cm

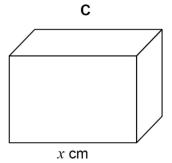
volume of a hemisphere = $\frac{2}{3} \pi r^3$ where r is the radius

Which solid has the greater volume?	
You must show your working.	[4 marks
Answer	


2 Here are three similar cuboids, A, B and C.

A has length 5 cm, width 2 cm and height 3 cm


B has length 10 cm


C has length x cm

В

2 (a) The total surface area of A is 62 cm²

Tim wants to work out the total surface area of B.

Here is his working.

$$10 \div 5 = 2$$

$$62 \times 2 = 124$$

Total surface area of $B = 124 \text{ cm}^2$

Make one criticism of Tim's method.

ı	1	mark [†]

2 (b) Volume of A × $\frac{125}{8}$ = Volume of C

Work out the value of x.

[3 marks]

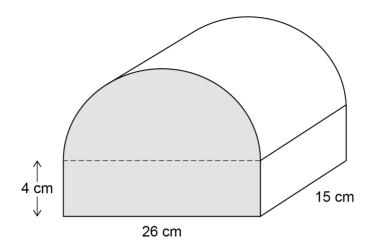
Answer _____

[4 marks]

3 A ball contains 5000 cm³ of air.

More air is pumped into the ball at a rate of 160 $\,\mathrm{cm^3}$ per second.

The ball is full of air when it becomes a sphere with radius 15 cm


Volume of a sphere = $\frac{4}{3}\pi r^3$ where r is the radius

Does it take less than 1 minute to fill the ball?

You **must** show your working.

[

4 A box is the shape of half a cylinder on top of a cuboid.

Work out the volume of the box.

[4 11	ıarks

Answer $_$ cm³

Outside a cafe there is a large plastic ice cream cornet.The cornet is a hemisphere on top of a cone.

The cone and the hemisphere each have radius 24 cm The cone has perpendicular height 117 cm

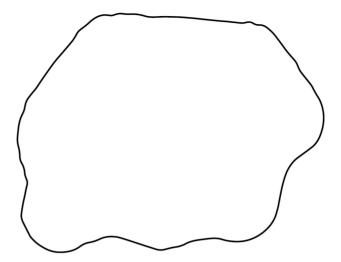
Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

r is the radius

 $\it h$ is the perpendicular height

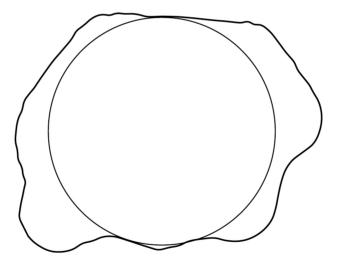
Volume of a hemisphere =
$$\frac{2}{3} \pi r^3$$

r is the radius


5 (a) Work out the total volume of the cornet.

[4 marks]

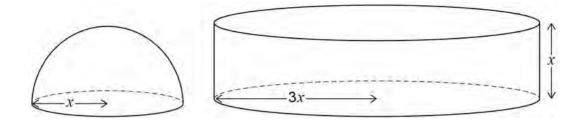
Answer cm³


6 Here is a scale drawing of a reservoir.

Scale: 1 cm represents 500 m

Virat wants to estimate the volume of water in the reservoir.

He draws on the scale drawing a circle with radius 3 cm


6 (a)

Virat estimates the volume of the reservoir by assuming that

VVOIN	ut Virat's estimate in cubic metres.	
	Answer	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
In fact		
	• the depth of the reservoir is	13.8 metres
	• the reservoir is not a cylinde	er (see diagram).
Which	statement about the actual volume	of the reservoir is correct?
Tick o	e box.	
	It is less than Virat's e	stimate
	It is greater than Virat'	s estimate
	It could be less than o	r greater than Virat's estimate

7 A solid hemisphere has radius x.

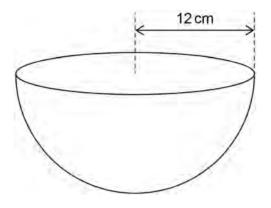
A solid cylinder has radius 3x and height x.

Surface area of a sphere = $4\pi r^2$ where r is the radius

Work out the ratio

total surface area of the hemisphere : total surface area of the cylinder Give your answer in its simplest form.

You **must** show your working.

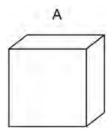

		[3 marks

Answer ____ : ____

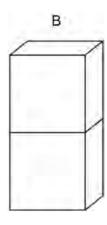
8

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

A bowl is a hemisphere with radius 12 cm


Water is poured into the bowl at a rate of 325 cm³ per second for 8 seconds.

Does the water fill more than 70% of the bowl?


You **must** show your working.

Tou must snow your working.	[4 marks

9 Here is cuboid A.

Cuboid B is made from two of cuboid A.

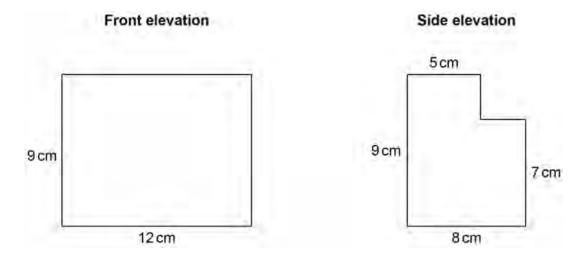
volume of A : volume of B = 1 : 2

Matthew says,

"surface area of A: surface area of B must be 1: 2 because B is made of 2 of A."

Is Ma

Tick c


Give

tthew correct?		
one box.		
Yes	No	Cannot tell
a reason for your answer.		[2 marks

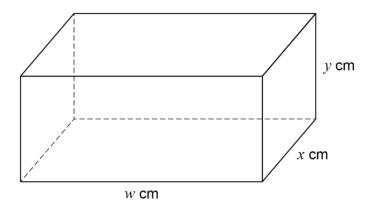
10 A solid shape is made from centimetre cubes.

The front elevation and side elevation of the shape are shown.

Not drawn accurately

Work out

the **maximum** possible number of cubes in the shape and

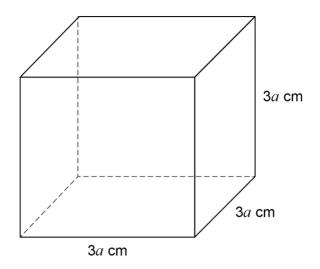

the **minimum** possible number of cubes in the shape.

[3 marks]

Maximum	Minimum
Maximum	WIII III I I GITT

11 (a) Here is a cuboid.

w, x and y are **different** whole numbers.



The total length of **all** the edges of the cuboid is 80 cm

The volume is **greater** than 200 cm³

Work out one possible set of values for w,x and y .	[2 marks

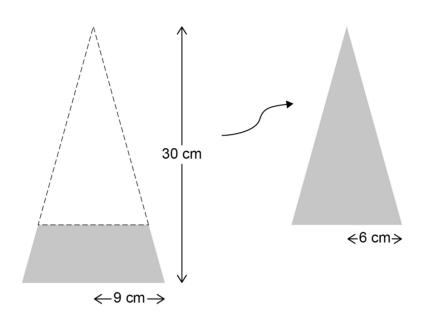
11 (b) Here is a solid cube.

Circle the expression for the $\it total$ surface area in $\it cm^2$

[1 mark]

36*a*

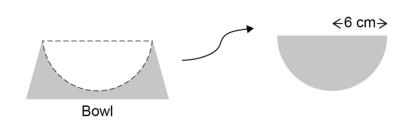
54*a*


 $36a^{2}$

54*a*²

Alec makes a bowl for dog food from a solid wooden cone.

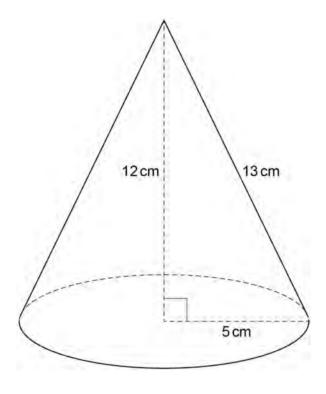
The sketches show how the bowl is made.


The cone has radius 9 cm and perpendicular height 30 cm A smaller cone, with radius 6 cm, is removed.

Not drawn accurately

Volume of a cone
$$= rac{1}{3} \pi r^2 h$$
 where r is the radius and h is the perpendicular height

A hemisphere with radius 6 cm is then removed.



Not drawn accurately

Volume of a hemisphere
$$=\frac{2}{3}\pi r^3$$
 where r is the radius

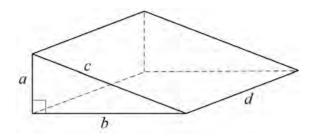
Work out the volume of the remaining wood that forms the bowl.	[5 marks]
Answer cm	3

13 Here is a cone.

13 (a)

Curved surface area of a cone = $\pi r l$ where r is the radius and l is the slant height

Beth tries to work out the curved surface area in terms of $\boldsymbol{\pi}$


Curved surface area of the cone = $\pi \times 5 \times 12$ = $60\pi\,\text{cm}^2$

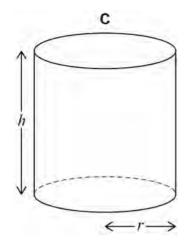
What mistake has she made?

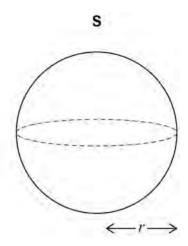
[1 mark]

13	(b)	Adam uses $\pi = 3$ to estimate the area of the base of the cone.	
		Work out his estimate.	[2 marks]
		Answercm ²	
13	(c)	Beth uses $\pi = 3.14$ to estimate the area of the base of the cone.	
		Is Beth's estimate more than or less than Adam's estimate?	
		Tick a box.	
		More than Less than	
		Give a reason for your answer.	[1 mark]

14 Here is a right-angled triangular prism.

The ratio of the edges is a : b : c : d = 3 : 4 : 5 : 12


The **volume** of the prism is $1125\,\mathrm{cm}^3$


Answer

Work out the total length of all of the edges of the prism.	[5 marks]

cm

15 A cylinder, C, and a sphere, S, each have radius r C has height h

Volume of a sphere $=\frac{4}{3}\pi r^3$ where r is the radius

15 (a) volume of C = volume of S

Work out the ratio r: h

You **must** show your working.

[3 marks]

Answer :

15 (b)	A different cylinder has radius $3r$ and height $2h$.		
	How many times bigger is the volume of this cylinder than the volume of C?	[2 marks	
	Answer		